If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x-9x^2+5=0
a = -9; b = 9; c = +5;
Δ = b2-4ac
Δ = 92-4·(-9)·5
Δ = 261
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{261}=\sqrt{9*29}=\sqrt{9}*\sqrt{29}=3\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{29}}{2*-9}=\frac{-9-3\sqrt{29}}{-18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{29}}{2*-9}=\frac{-9+3\sqrt{29}}{-18} $
| 3x+4-x=5 | | 2/3x-4/5=2 | | 14+12+x=−34 | | 9x2+x-1=0 | | 15/10=x/4 | | 1/3x-1/4=3/5x+1/7 | | -11f=-7f+5 | | 16y2+8y+1=18 | | 18.50x+125+220=590 | | h+20=35–4h | | X+5+4x=11+3x | | X2-x-56=0 | | 24x^2+50x+21=0 | | 2x^2-12x-53=0 | | X^+x=56 | | 2+22+6+9=x+95 | | 4x+1x=10 | | 4-2v=-10 | | G(-x)=4x+9 | | 3x+1x=40 | | V=2.5(6.4−t) | | 2(3x-5)=4(2x+5) | | 27=1/3x+1 | | 2b-11b-(-5b)=12 | | 17/x+20=6 | | 220+0.25x=375 | | 4=1/6(5x-12) | | -70=-7(v+4) | | X-2/6+x+8/5=7/6 | | 12x2+4x−5=0 | | 8-7u=-20 | | 6x-2=4x+48 |